If it's not what You are looking for type in the equation solver your own equation and let us solve it.
47q^2+26q=0
a = 47; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·47·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*47}=\frac{-52}{94} =-26/47 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*47}=\frac{0}{94} =0 $
| 7j^2+13j-2=0 | | 60=-0.5x+60 | | 90w-7.29=60.84 | | 18.99w+93=224.52 | | 4v^2+15v+11=0 | | 17z^2-14z=0 | | -15-3w=4w+-2w | | -7/4x=-19 | | 9n^2+28n+3=0 | | 7/4x=19 | | x²=-20 | | 4k^2+5k-9=0 | | 93w+18.99=224.52 | | 1.5y+5=17 | | 8(-1+m)+3=2m-5½ | | -12+12=-3(5x+8) | | -46=u/5 | | v-5/7=7/2/3 | | z/4.28=1.5 | | V+2=v-3 | | 14j^2+25j=0 | | Y=2(x²+4x)+2x-1 | | 47q^2-41q=0 | | 8f^2+22f+14=0 | | n+4=9×5 | | w-4.35=7.4 | | 2(5x=6)=6(2x=1) | | 5(6n+6=30 | | 100j^2+20j+1=0 | | w-3/4=41/2 | | 2x-1=4x+7+60 | | (6x-19)=3x+10 |